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Growth with surface curvature on quenched potentials

Jae Hwan Lee, Soo Kyung Kim, and Jin Min Kim*
Department of Physics, Soongsil University, Seoul 156-743, Korea

~Received 18 January 2000!

A discrete growth model driven by the Laplacian of the surface curvature in quenched random media is
discussed. The interface widthW at the saturated regime obeys scalingW;La with a'2.3, whereL is the
system size. Starting from an initial sine wave condition of a selected wavelength, we measure an autocorre-
lation function, and obtain the dynamic critical exponentz'3.1. The model is expected to be described by the
quenched Mullins-Herring equations.

PACS number~s!: 05.40.2a, 47.55.Mh, 68.35.Fx
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Kinetic roughening of driven interface in quenched ra
dom media has attracted very much attention recently@1#. It
is related through various mapping to many other phys
phenomena such as the immiscible displacement of fluid
porous media@2#, the domain walls in magnetic systems@3#,
flux movement in a superconductor@4#, and the invasion of
liquid in porous media@5#. When an interface in disordere
media is driven by an external forceF, the motion of it
shows a pinning-depinning transition. The quenched diso
generates random pinning forces effectively. If the drivi
forceF is sufficiently weak compared to the random pinni
force, the interface is pinned by the disorder. IfF is strong
enough, the interface moves indefinitely with an average
locity v. At Fc , which is the critical force,v(t) decreases
following a power law of time and approaches zero.

The roughness of the interface is an interesting quantit
this kind of growth phenomena. In a finite system of late
sizeL, the surface widthW, which is the standard deviatio
of the height, scales as@6#

W2~L,t !;H L2ag~ t/Lz!

t2b, t!Lz

L2a, t@Lz,

~1!

where the scaling functiong(x) is x2b for x!1 and constant
for x@1. The exponentsa, b, andz are called the rough
ness, the growth, and the dynamic exponents, respectiv
They are connected by the relationzb5a. Recently a more
general scaling form ofW is suggested for the self-organize
critical models to explain other correlation length that
flects the amount of self-organization that has taken pl
@7#.

There are some trials to classify the surface roughn
with each universality class corresponding to a particu
continuum growth equation for the coarse-grained hei
variablesh(x,t), which describes the growing interface as
function of the lateral surface coordinatex and timet. For
example, the model of random deposition with diffusion
the local height minima@6# is known to belong to the Ed
wards and Wilkinson~EW! universality, described by the
EW equation@8#. In this case the noise is a thermal nois
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which depends on both space and time. Here, we focus
the effect of the quenched disorder, which is frozen in
medium.

One of the simple equations for the interface roughen
in quenched random media is the quenched Edwa
Wilkinson ~QEW! equation

]h~x,t !

]t
5n2¹2h1h~x,h!1F, ~2!

where F is the external driving force andh(x,h) is the
quenched random potential satisfying the relati
^h(x,h)h(x8,h8)&52Dd(x2x8)d(h2h8). Many studies
are devoted to the QEW equation and the related mo
@9–15#. One of them is the linear-interface model~LIM !
@9,10,15#. Paczuskiet al. studied the LIM with driving force
@10#. Here, the model is described briefly. Each site ha
random noiseh(x,h) to represent quenched random pinni
forces and there is a linear configurational termf con f;¹2h,
whereh is the local height. Thus the local total force

Ftot~x,t !5n2¹2h~x,t !1h~x,h! ~3!

is calculated and the height of the site that has the maxim
total force is advanced by one unit at each time. So
model is driven by the extremal dynamics. It is genera
believed that the model is expected to follow the QEW eq
tion.

As pointed out before@16#, if the surface current is driven
by the differences in the surface chemical potential and
chemical potential is proportional to the surface curvatu
one has to replace¹2h by 2¹4h in the QEW equation. So it
would be interesting to consider a quenched Mullins-Herr
~QMH! equation@17#

]h~x,t !

]t
52n4¹4h1h~x,h!1F. ~4!

The equation could be relevant to the dynamics of the liq
in porous media.

Here we consider a discrete growth model, which is e
pected to follow the QMH equation. In one substrate dime
sion, a'2.3 is obtained. We also measure the dynamic
ponentz independently using the relaxation function meth
@18#, and findz'3.1.
3299 ©2000 The American Physical Society
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We introduce a discrete model to mimic the QMH equ
tion. At each site, the random quenched noiseh(x,h) is
given with the uniform distribution between21 and 1. Start-
ing from initial flat surface, the local total force

Ftot~x,t !52n4¹4h1h„x,h~x,t !… ~5!

is calculated and then the height of the maximum total fo
site is advanced by one unit. We have carried out exten
simulations for this growth model at one substrate dim
sion. Since one height step is advanced at each trial,
average surface height^h(x,t)& is treated as timet. Starting
from a flat interface, the entire process is subject to the
riodic boundary condition. The simulations are carried o
for the system sizesL516, 32, 64, 128, and 256, and th
data are averaged over 400 configurations. To obtaina and
b, the time-dependent interface widthW(L,t) are monitored.
As usual, the surface widthW(t) increases astb for early
times and eventually saturates when the parallel correla
t1/z is of the order of the lateral system sizeL @19#.

For the roughness exponenta describing the saturation o
the interface fluctuation, we use the relationW(L);La in
the steady-state regimet@Lz. Since the value ofz is around
three, it takes a long time to arrive at the saturated regi
This forced us to restrict our simulation system sizes toL
5256 ind5111. As shown in Fig. 1, from the log-log plo
of W(L) and sizeL, we get a nice straight line with

a52.360.1. ~6!

To obtain the collapse of the data, we rescaleW by La with
a52.3 andt by Lz for various values ofz. In Fig. 2, the
rescaled data of different system sizes are collapsed in
curve for a specific valuez53.1. In general,b is obtained
from the slope of the straight line fit through the data poi
W(L,t) in log-log plot for t!Lz. The data collapse is no
perfect for the regime, where the line through the data po
is not straight. Through the relationW(t);tb, we can
roughly estimateb50.8;0.9. Note that the slope varie
with time. Even for large system sizeL58192, we could not
get an accurate value ofb directly from lnW(t)-ln t plot.

Again, we try to determineb from the saturated surfac
width. Start from flat initial condition and wait until the

FIG. 1. The plot ofW2(L) at the saturated regime as a functio
of L in log-log plot withn450.5 for the system sizesL516, 32, 64,
128, and 256. The guideline is fora52.3.
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width becomes saturated up to timets . The saturated surfac
heighths(x,t) is defined ash(x,t1ts)2h(x,ts). The surface
width W(t) obtained fromhs(x,t) also satisfies the powe
law behavior W(t);tbs. In simulation, we wait a long
enough time until the width is saturated. The saturated s
face configuration is chosen as the initial configuration. T
widths from the saturated surface height are monitored a
function of time. In Fig. 3, the dependence ofW on t is
shown in a log-log plot. The straight line through the da
points indicates that

bs50.7560.01. ~7!

In comparison with the data from the saturated initial con
tion in Fig. 3, the plot of surface width as a function of tim
in Fig. 2 is curved fort!Lz. The value ofbs is different
from that ofb. As pointed out by Ref.@7#, for the generically
critical models@20#, the saturatedb is the same asb. How-
ever, for the self-organized critical models,bs is usually dif-
ferent fromb.

The value ofa is measured accurately from the saturat
surface width andz can be obtained from the data collapse

FIG. 2. The scaling collapse of the surface width as a funct
of time for the system sizesL516, 32, 64, 128, and 256 witha
52.3, z53.1. The plot ofW2(L,t) againstt in logarithmic scales
for the system sizes~inset!.

FIG. 3. W2(t) from the saturated surface height as a function
time t in logarithmic scales forL5256. The guideline is forbs

50.75.
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the scaling plot. Here, we use the relaxation function met
@18# to measurez independently. The method is describ
here briefly. A sine wave

h~x,0!5C sin~2px/ l ! ~8!

is prepared for the initial condition, whereC and l are the
amplitude and the wavelength, respectively. The surfac
allowed to evolve following the growth rule of the mode
We consider an autocorrelation functionC(t,l ) of the height

C~ t,l !5^h~x,0!h~x,t !&, ~9!

to characterize the relaxation process of the initial conditi
The normalized relaxation functionsR(t,l ) of C are defined
as

R~ t,l !5C~ t,l !/C~0,l !. ~10!

In the long-time limit, the surface height does not have
correlation with the initial condition such thatR becomes
zero.R shows how the initial fluctuation relaxes with tim
In general, the relaxation function decays exponentially

R~ t,l !;e2g[ t/t( l )] , ~11!

FIG. 4. The data collapse of the relaxation functions for wa
lengths l 532, 64, 128, and 256 withz53.1. The curves ofR(t)
againstt in logarithmic scales, from the left, represent forl 532, 64,
128, and 256 in the inset.
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wheret is the relaxation time. The characteristic time of t
relaxation function depends on the selected wavelengthl of
the initial fluctuation. We expect that the relaxation time
proportional tol z. So, the normalized relaxation function fo
lows the scaling form

R~ t,l !; f ~ t/ l z!. ~12!

We measure the relaxation functions in our model for va
ous wavelengthsl. The normalized relaxation function
against lnt are shown in the inset of Fig. 4 for the wave
lengths l 516, 32, 64, and 128. We try to rescale the tim
axes with the characteristic timet; l z. All curves are excel-
lently collapsed into an universal curve withz53.1 as shown
in Fig. 4. The values of the exponents are summarized
Table I.

We study a discrete growth model in quenched rand
potential that is expected to follow the quenched Mullin
Herring equation.a'2.3 andbs'0.75 are obtained from
the saturated regime. The relaxation function measurem
also allows us to find the dynamic exponentz53.1. It is
interesting that the values of the exponents satisfy the r
tion a/z5bs very well. The value ofa is close to 7/3, which
can be obtained from the power counting of the equati
There have been many studies on interface in quenched
dom media. However, theories, simulations, and experime
are not in good agreement yet. We cannot say anything c
clusive on the question of universality because of compu
limitations and the lack of analytic tools. Experiments, an
lytic calculation of the exponents for the QMH equation, a
the study of the discrete model in higher dimensions
required@21#.

This work was supported by the KRF~1999-015-
DP0090!.
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TABLE I. Exponents of the model.

Exponents

a bs z
2.360.1 0.7560.01 3.160.1
er.
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